返回

高中数学

首页
  • 单选题
    已知函数y=f(log2x)的定义域为[1,4],则函数y=f(2sinx-1)的定义域是(  )
    A.(2kπ-
    6
    ,2kπ+
    π
    6
    ) 
     
    k∈Z
    B.[2kπ+
    π
    6
    ,2kπ+
    6
    ]
     
     
    k∈Z
    C.[2kπ-
    3
    ,2kπ+
    π
    3
    ]
     
     
    k∈Z
    D.(2kπ-
    π
    6
    ,2kπ+
    π
    6
    ) 
     
    k∈Z

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数y=f(log2x)的定义域为[1,4],则函数y=f(2sinx-1)的定义域是( )A.(2kπ-7π6,2kπ+π6) k∈ZB.[2kπ+π6,2kπ+5π6] k∈ZC.[2kπ-2π3,2kπ+π3] k∈ZD...” 主要考查您对

函数的定义域、值域

对数函数的解析式及定义(定义域、值域)

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的定义域、值域
  • 对数函数的解析式及定义(定义域、值域)
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

定义域、值域的概念:

自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。


1、求函数定义域的常用方法有:

(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则  。

 3、求函数值域的方法:

(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)


对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)


在解有关对数函数的解析式时注意

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。


正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。