返回

高中三年级数学

首页
  • 解答题
    已知函数f (x)=的定义域集合是A,函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域集合是B.
    (1)求集合A,B.
    (2)若A∪B=B,求实数a的取值范围.
    本题信息:2012年期末题数学解答题难度较难 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “已知函数f (x)=的定义域集合是A,函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域集合是B.(1)求集合A,B.(2)若A∪B=B,求实数a的取值范围.” 主要考查您对

集合间交、并、补的运算(用Venn图表示)

函数的定义域、值域

对数函数的解析式及定义(定义域、值域)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合间交、并、补的运算(用Venn图表示)
  • 函数的定义域、值域
  • 对数函数的解析式及定义(定义域、值域)

1、交集概念:

(1)一般地,由所有属于集合A且集合B的元素所组成的集合,叫做A与B的交集,记作A∩B,读作A交B,表达式为A∩B={x|x∈A且x∈B}。
(2)韦恩图表示为


2、并集概念:


(1)一般地,由所有属于集合A或集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,读作A并B,表达式为A∪B={x|x∈A或x∈B}。
(2)韦恩图表示为


3、全集、补集概念:


(1)全集:一般地,如果一个集合含有我们所要研究的各个集合的全部元素,就称这个集合为全集,通常记作U。
        补集:对于一个集合A,由全集U中所有不属于A的元素组成的集合称为集合A相对于全集U的补集,记作CUA,读作U中A的补集,表达式为CUA={x|x∈U,且xA}。
(2)韦恩图表示为


1、交集的性质:

 

2、并集的性质:

 

3、补集的性质:

 


定义域、值域的概念:

自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。


1、求函数定义域的常用方法有:

(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则  。

 3、求函数值域的方法:

(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)


对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)


在解有关对数函数的解析式时注意

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。