返回

高中三年级数学

首页
  • 解答题
    设二次函数f(x)=-x2+ax+a,方程f(x)-x=0的两根x1和x2满足0<x1<x2<1。
    (1)求实数a的取值范围;
    (2)试比较f(0)·f(1)-f(0)与的大小,并说明理由。
    本题信息:2007年湖北省高考真题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “设二次函数f(x)=-x2+ax+a,方程f(x)-x=0的两根x1和x2满足0<x1<x2<1。(1)求实数a的取值范围;(2)试比较f(0)·f(1)-f(0)与的大小,并说明理由。” 主要考查您对

函数的单调性、最值

二次函数的性质及应用

反证法与放缩法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性、最值
  • 二次函数的性质及应用
  • 反证法与放缩法

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。


二次函数的定义:

一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。

二次函数的图像

是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴
③有顶点
④c表示抛物线与y轴的交点坐标:(0,c)。

性质:二次函数y=ax2+bx+c,

①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。


二次函数(a,b,c是常数,a≠0)的图像:

图像 函数的性质
a>0 定义域 x∈R(个别题目有限制的,由解析式确定)
 
值域 a>0 a<0
 
奇偶性 b=0时为偶函数,b≠0时为非奇非偶函数
a<0 单调性 a>0 a<0
图像特点

二次函数的解析式:

(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为


二次函数在闭区间上的最值的求法:

(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
 



特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.

(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
 
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。

二次函数的应用

(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。


反证法的定义:

有些不等式无法利用题设的已知条件直接证明,我们可以用间接的方法——反证法去证明,即通过否定原结论——导出矛盾——从而达到肯定原结论的目的。

放缩法的定义:

把原不等式放大或缩小成一个恰好可以化简的形式,比较常用的方法是把分母或分子适当放大或缩小(减去或加上一个正数)使不等式简化易证。


反证法证题的步骤:

若A成立,求证B成立。
共分三步:
(1)提出与结论相反的假设;如负数的反面是非负数,正数的反面是非正数即0和负数;
(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进行推理否则不是反证法或证错);
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相矛盾。
反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

放缩法的意义:

放缩法理论依据是不等式的传递性:若,a<b,b<c,则a<c.

放缩法的操作:

若求证P<Q,先证P<P1<P2<…<Pn,再证恰有Pn<Q.
需注意:(1)只有同方向才可以放缩,反方向不可。
(2)不能放(缩)得太大(小),否则不会有最后的Pn<Q.