返回

高中数学

首页
  • 解答题
    已知a,b,c分别是△ABC的三个内角A,B,C的对边,若向量
    m
    =(2b-c,cosC)
    n
    =(a,cosA)
    ,且
    m
    n

    (1)求角A的大小;
    (2)求函数y=
    3
    sinB+sin(C-
    π
    6
    )
    的值域.
    本题信息:2013年宿迁一模数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知a,b,c分别是△ABC的三个内角A,B,C的对边,若向量m=(2b-c,cosC),n=(a,cosA),且m∥n.(1)求角A的大小;(2)求函数y=3sinB+sin(C-π6)的值域.” 主要考查您对

两角和与差的三角函数及三角恒等变换

正弦定理

零向量与单位向量

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两角和与差的三角函数及三角恒等变换
  • 正弦定理
  • 零向量与单位向量

两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.


正弦定理:

在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1)
(2)
(3)


正弦定理在解三角形中的应用:

(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。

也可根据a,b的关系及与1的大小关系来确定。         


零向量的定义:

长度为0的向量叫零向量,记作:,注意零向量的方向是任意的。

单位向量的定义:

长度为一个单位长度的向量叫做单位向量,常用表示。


零向量和单位向量的理解:

(1)注意零向量与数零的含义与书写的区别,零向量是一个向量所以零向量是有方向的并且规定零向量的方向是任意的;
(2)零向量和单位向量的定义都只是限制了大小;
(3)所有的单位向量都是相等向量是一种错误的说法,因为它们的方向可能不同;所有单位向量的模都相等是一种正确的说法,并且它们的模都等于1.