返回

高中三年级数学

首页
  • 解答题
    已知△OPQ的面积为S,且
    (1)若,求向量的夹角θ的取值范围;
    (2)设=m,S=m,以O为中心,P为焦点的椭圆经过点Q,当m在[2,+∞)上变动时,求的最小值,并求出此时的椭圆方程。
    本题信息:2011年0125模拟题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知△OPQ的面积为S,且;(1)若,求向量与的夹角θ的取值范围;(2)设=m,S=m,以O为中心,P为焦点的椭圆经过点Q,当m在[2,+∞)上变动时,求的最小值,并求...” 主要考查您对

函数的单调性、最值

面积定理:S=1/2absinC=1/2acsinB=1/2bcsinA

向量模的计算

椭圆的标准方程及图象

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性、最值
  • 面积定理:S=1/2absinC=1/2acsinB=1/2bcsinA
  • 向量模的计算
  • 椭圆的标准方程及图象

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。


三角形面积公式:

(1)

其中r为三角形ABC内切圆半径,R为外接圆的半径,
(2)数量积形式的三角形面积公式:


(3)坐标形式的三角形面积公式:
 



方法提炼:

(1)三角形的面积经常与正余弦定理结合在一起考查,解题时要注意方程思想的运用,即通过正余弦定理建立起方程(组),进而求得边或角;
(2)要熟记常用的面积公式及其变形.


向量的模

,则有向线段的长度叫做向量的长度或模,记作:,则 

 向量模的坐标表示:

(1)若,则
(2)若,那么


求向量的模:

求向量的模主要是利用公式来解。


椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,