返回

高中数学

首页
  • 解答题
    (1)化简[(a-
    3
    2
    b2)-1(ab-3)
    1
    2
    (b
    1
    2
    )7]
    1
    3

    (2)解
    1
    6
    lgx=
    1
    3
    lga+2lgb+lgc.
    (3)用二项式定理计算(3.02)4,使误差小于千分之一.
    (4)试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和.
    (5)已知球的半径等于r,试求内接正方形的体积.
    (6)已知a是三角形的一边,β及γ是这边的两邻角,试求另一边b的计算公式.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “(1)化简[(a-32b2)-1(ab-3)12(b12)7]13.(2)解16lgx=13lga+2lgb+lgc.(3)用二项式定理计算(3.02)4,使误差小于千分之一.(4)试证直角三角形弦上的半...” 主要考查您对

指数与指数幂的运算(整数、有理、无理)

对数函数的图象与性质

正弦定理

二项式定理与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数与指数幂的运算(整数、有理、无理)
  • 对数函数的图象与性质
  • 正弦定理
  • 二项式定理与性质

n次方根的定义

一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。

分数指数幂的意义

(1)
(2)
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。


n次方根的性质:

(1)0的n次方根是0,即=0(n>1,n∈N*);
(2)=a(n∈N*);
(3)当n为奇数时,=a;当n为偶数时,=|a|。

幂的运算性质

(1)
(2)
(3)
注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。


对数函数的图形:


对数函数的图象与性质


对数函数与指数函数的对比:

 (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
 (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
 (3)指数函数与对数函数的联系与区别:




对数函数单调性的讨论:

解决与对数函数有关的函数单调性问题的关键:一是看底数是否大于l,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性,但应注意中间变量的取值范围;三要注意其定义域(这是一个隐形陷阱),也就是要坚持“定义域优先”的原则.

利用对数函数的图象解题

涉及对数型函数的图象时,一般从最基本的对数函数的图象人手,通过平移、伸缩、对称变换得到对数型函数的图象,特别地,要注意底数a>l与O<a<l的两种不同情况,


底数对函数值大小的影响

1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
 

2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数,则必有
 
   


正弦定理:

在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1)
(2)
(3)


正弦定理在解三角形中的应用:

(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。

也可根据a,b的关系及与1的大小关系来确定。         



二项式定理:


它共有n+1项,其中(r=0,1,2…n)叫做二项式系数,叫做二项式的通项,用Tr+1表示,即通项为展开式的第r+1项.


二项式系数的性质:

(1)对称性:与首末两端“等距离”的两个二项式系数相等,即
(2)增减性与最大值:当r≤时,二项式系数的值逐渐增大;当r≥时,的值逐渐减小,且在中间取得最大值。
当n为偶数时,中间一项的二项式系数取得最大值;当n为奇数时,中间两项的二项式系数相等并同时取最大值。


二项式定理的特别提醒:

的二项展开式中有(n+1)项,比二项式的次数大1.
②二项式系数都是组合数,它与二项展开式的系数是两个不同的概念,在实际应用中应注意区别“二项式系数”与“二项展开式的系数”。
③二项式定理形式上的特点:
在排列方式上,按照字母a的降幂排列,从第一项起,a的次数由n逐项减小1,直到0,同时字母6按升幂排列,次数由0逐项增加1,直到n,并且形式不能乱.
④二项式定理中的字母a,b是不能交换的,即的展开式是有区别的,二者的展开式中的项的排列次序是不同的,注意不要混淆.
⑤二项式定理表示一个恒等式,对于任意的实数a,b,该等式都成立,因而,对a,b取不同的特殊值,可以对某些问题的求解提供方便,二项式定理通常有如下两种情形:
⑥对二项式定理还可以逆用,即可用于式子的化简。 

二项式定理常见的利用:

方法1:利用二项式证明有关不等式证明有关不等式的方法:
(1)用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证.
(2)运用时应注意巧妙地构造二项式.证明不等式时,应注意运用放缩法,即对结论不构成影响的若干项可以去掉.
方法2:利用二项式定理证明整除问题或求余数:
(1)利用二项式定理解决整除问题时,关键是要巧妙地构造二项式,其基本做法是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.
(2)用二项式定理处理整除问题时,通常把底数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了.
(3)要注意余数的范围,为余数,b∈[0,r),r是除数,利用二项式定理展开变形后,若剩余部分是负数要注意转换.
方法3:利用二项式进行近似解:
当a的绝对值与1相比很少且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计,类似地,有 但使用这两个公式时应注意a的条件以及对计算精确度的要求.要根据要求选取展开式中保留的项,以最后一项小数位超要求即可,少了不合要求,多了无用且增加麻烦. 
方法4:求展开式特定项:
(1)求展开式中特定项主要是利用通项公式来求,以确定公式中r的取值或范围.
(2)要正确区分二项式系数与展开式系数,对于(a-b)n数展开式中系数最大项问题可以转化为二项式系数的最大问题,要注意系数的正负.
方法5:复制法
利用复制法可以求二项式系数的和及特殊项系数等问题。一般地,对于多项式

方法6:多项式的展开式问题:
对于多项式(a+b+c)n我们可以转化为[a+(b+c)]n的形式,再利用二项式定理,求解有关问题。