返回

高中三年级数学

首页
  • 解答题
    已知抛物线C:x2=2py(p>0)的焦点为F,A,B是抛物线C上异于坐标原点0的不同两点,抛物线C在点A,B处的切线分别为l1,l2,且l1⊥l2,l1与l2相交于点D。
    (Ⅰ)求点D的纵坐标;
    (Ⅱ)证明:A,B,F三点共线;
    (Ⅲ)假设点D的坐标为(,-1),问是否存在经过A,B两点且与l1,l2都相切的圆,若存在,求出该圆的方程;若不存在,清说明理由。
    本题信息:2011年广东省模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知抛物线C:x2=2py(p>0)的焦点为F,A,B是抛物线C上异于坐标原点0的不同两点,抛物线C在点A,B处的切线分别为l1,l2,且l1⊥l2,l1与l2相交于点D。(Ⅰ)求点D...” 主要考查您对

导数的概念及其几何意义

求过两点的直线的斜率

两直线平行、垂直的判定与性质

两条直线的交点坐标

圆的切线方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 导数的概念及其几何意义
  • 求过两点的直线的斜率
  • 两直线平行、垂直的判定与性质
  • 两条直线的交点坐标
  • 圆的切线方程

平均变化率:

一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率
  
上式中的值可正可负,但不为0.f(x)为常数函数时, 

瞬时速度:
如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即
若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.

函数y=f(x)在x=x0处的导数的定义

一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作,即

导函数:

如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=

切线及导数的几何意义:

(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=


瞬时速度特别提醒:

①瞬时速度实质是平均速度当时的极限值.
②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,

 函数y=f(x)在x=x0处的导数特别提醒:

①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.
②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.
③在点x=x0处的导数的定义可变形为:
    

导函数的特点:

①导数的定义可变形为:
②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,
③可导的周期函数其导函数仍为周期函数,
④并不是所有函数都有导函数.
⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.
⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).

导数的几何意义(即切线的斜率与方程)特别提醒

①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).
②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.
③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,
④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.


过两点的直线的斜率公式:

过两点P1(x1,y1),P2(x2,y2)的直线的斜率公式:
即, 


过两点的直线斜率公式的理解:

(1)k的值与P1,P两点的顺序无关

求直线的斜率的方法:

确定直线的斜率一般有两种情况,即已知直线的倾斜角,由求斜率;已知两点,由斜率公式求斜率.在实际问题中,应注意结合图形分析,准确求解并注意斜率不存在的情况.

斜率公式的应用:

(1)三点共线的证明斜率是反映直线相对于x轴正方向的倾斜程度的,直线上任意两点所确定的方向不变,即在同一直线上任何不同的两点所确定的斜率相等,这正是利用斜率可证三点共线的原因.三点共线的判定方法:已知三点,则判定三点A,B,C在一条直线上的常用方法是:
 
 
(2)利用斜率公式构造斜率,灵活解决形如之类的问题。


两直线平行、垂直的判定的文字表述:

平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直

两直线平行、垂直的判定的符号表示:

1、若
(1)
(2)
2、若,且A1、A2、B1、B2都不为零,
(1)
(2)


两直线平行的判断的理解:

成立的前提条件是两条直线的斜率存在,分别为 
当两条直线不重合且斜率均不存在时,

两直线垂直的判断的理解:

 成立的前提条件是斜率都存在且不等于零.
 ②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。

求与已知直线垂直的直线方程的方法:

(1)垂直的直线方程可设为垂直的直线方程可设为
 
 (2)利用互相垂直的直线之间的关系求出斜率,再用点斜式写出直线方程。
 
求与已知直线平行的直线方程的方法:
 
(1)一般地,直线决定直线的斜率,因此,与直线
平行的直线方程可设为,这是常常采用的解题技巧。
重合。
(2)一般地,经过点
(3)利用平行直线斜率相等,求出斜率,再用点斜式求出直线方程.
 

两条直线的交点:

两直线:,当它们相交时,方程组有唯一的解,以这个解为坐标的点就是两直线的交点。
若方程组无解,两直线平行;若方程组有无数个解,则两直线重合。


两条直线的交点特别提醒:

①若方程组无解,则直线平行;反之,亦成立;
②若方程组有无穷多解,则直线重合;反之,也成立;
③当有交点时,方程组的解就是交点坐标;
相交的条件是


圆的切线方程:

1、已知圆
(1)若已知切点在圆上,则切线只有一条,其方程是
(2)当圆外时,表示过两个切点的切点弦方程。
(3)过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线。
(4)斜率为k的切线方程可设为y=kx+b,再利用相切条件求b,必有两条切线。
2、已知圆
(1)过圆上的点的切线方程为
(2)斜率为k的圆的切线方程为


圆的切线方程的求法:

①代数法:设出切线方程,利用切线与圆仅有一个交点,将直线方程代入圆的方程,从而△=0,可求解;
②几何法利用几何特征:圆心到切线的距离等于圆的半径,可求解.

过定点的圆的切线方程:

①过圆上一点的切线方程:
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是

②过圆外一点的切线方程:设外一点,求过P0点的圆的切线.
方法l:设切点是,解方程组

求出切点P1的坐标,即可写出切线方程。
方法2:设切线方程是 ,再由 求出待定系数k,就可写出切线方程.
特别提醒:一般说来,方法2比较简便,但应注意,可能遗漏k不存在的切线.因此,当解出的k值唯一时,应观察图形,看是否有垂直于x轴的切线.