本试题 “已知向量=(sinA,cosA),=(,-1),,且A为锐角。(1)求角A的大小;(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域。” 主要考查您对正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
函数y=Asin(wx+φ)的图象与性质
两角和与差的三角函数及三角恒等变换
用坐标表示向量的数量积
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,
1.正弦函数
2.余弦函数
函数图像的性质
正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。
正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。
函数的图象:
1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的,y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。
函数y=Asin(x+φ)的性质:
1、y=Asin(x+φ)的周期为;
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。
两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
方法提炼:
(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
两个向量的数量积的坐标运算:
非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。
向量的数量积的推广1:
设a=(x,y),则|a|=x2+y2 ,或|a|=
向量的数量积的推广2:
与“已知向量=(sinA,cosA),=(,-1),,且A为锐角。(1)求...”考查相似的试题有: