本试题 “设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096。(1)求数列{an}的通项公式;(2)设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn<-509?” 主要考查您对对数与对数运算
等比数列的通项公式
等差数列的前n项和
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记做,其中a叫做对数的底数,N叫做真数。
通常以10为底的对数叫做常用对数,记做;
以无理数e=2.71828…为底的对数叫做自然对数,记做。
由定义知负数和0没有对数。
常用对数:
以10为底的对数叫做常用对数,。
自然对数:
以e为底的对数叫做自然对数,e是无理数,e≈-2. 718 28,。
对数的运算性质:
如果a>0,且a≠1,M>0,N>0,那么
(1);
(2);
(3);
(4)。
对数的恒等式:
(1);(2);
(3);(4);
(5)。
对数的换底公式及其推论:
对数式的化简与求值:
(1)化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.
(2)结合对数定义,适时进行对数式与指数式的互化.
(3)利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化,
等比数列的通项公式:
an=a1qn-1,q≠0,n∈N*。
等比数列的通项公式的理解:
①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:
将以上(n一1)个等式相乘,便可得到
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。
等差数列的前n项和的公式:
(1),(2),(3),(4)
当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。
等差数列的前n项和的有关性质:
(1),…成等差数列;
(2){an}有2k项时,=kd;
(3){an}有2k+1项时,S奇=(k+1)ak+1=(k+1)a平, S偶=kak+1=ka平,S奇:S偶=(k+1):k,S奇-S偶=ak+1=a平;
解决等差数列问题常用技巧:
1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。
为减少运算量,要注意设元的技巧,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…
2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);
(2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。
与“设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096。(1...”考查相似的试题有: