返回

高中数学

首页
  • 解答题
    数列{an}各项均为正数,Sn为其前n项的和.对于n∈N*,总有an,Sn,an2成等差数列.
    (1)求数列{an}的通项an
    (2)设数列{
    1
    an
    }
    的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:当n≥2,n∈N时,Rn-1=n(Tn-1);
    (3)若函数f(x)=
    1
    (p-1)•3qx+1
    的定义域为Rn,并且
    lim
    n→∞
    f(an)=0(n∈N*)
    ,求证p+q>1.
    本题信息:2008年南汇区二模数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “数列{an}各项均为正数,Sn为其前n项的和.对于n∈N*,总有an,Sn,an2成等差数列.(1)求数列{an}的通项an;(2)设数列{1an}的前n项和为Tn,数列{Tn}的前n项...” 主要考查您对

等差数列的定义及性质

数列的极限

数列求和的其他方法(倒序相加,错位相减,裂项相加等)

数学归纳法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差数列的定义及性质
  • 数列的极限
  • 数列求和的其他方法(倒序相加,错位相减,裂项相加等)
  • 数学归纳法

等差数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。


等差数列的性质:

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N*,则am=an+(m-n)d;
(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)
(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
(8) 仍为等差数列,公差为


 


对等差数列定义的理解:

①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. 
②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

等差数列求解与证明的基本方法:

(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).


数列的极限定义(描述性的):

如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。

数列的极限严格定义

即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。

数列极限的四则运算法则:

,则
(1)
(2)
(3)
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。


an无限接近于a的方式有三种:

第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,


一些常用数列的极限:

(1)常数列A,A,A,…的极限是A;
(2)当时,
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。


数列求和的常用方法:

1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
 
数列求和的方法多种多样,要视具体情形选用合适方法。


数列求和特别提醒:

(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

 

归纳法:

对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法叫做归纳法。归纳法包括完全归纳法和不完全归纳法。

数学归纳法:

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)证明当n取第一个值n0(n0∈N*)时命题成立;
(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立;
完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立,这种证明方法叫做数学归纳法。


数学归纳法的特点:

①用数学归纳法进行证明时,要分两个步骤,两步同样重要,两步骤缺一不可;
②第二步证明,由假设n=k时命题成立,到n=k+1时.必须用假设条件,否则不是数学归纳法;
③最后一定要写“由(1)(2)……”。

数学归纳法的应用:

(1)证明恒等式;
(2)证明不等式;
(3)三角函数;
(4)计算、猜想、证明。