返回

高中三年级数学

首页
  • 解答题
    在直角坐标系xOy中,以O为圆心的圆与直线x-y=4相切,
    (Ⅰ)求圆O的方程;
    (Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围。
    本题信息:2007年高考真题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “在直角坐标系xOy中,以O为圆心的圆与直线x-y=4相切,(Ⅰ)求圆O的方程;(Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范...” 主要考查您对

等比中项

用坐标表示向量的数量积

圆的标准方程与一般方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比中项
  • 用坐标表示向量的数量积
  • 圆的标准方程与一般方程

等比中项:

若数a,G,b成等比数列,那么就称G为a与b的等比中项,从而有G2=ab或G=±


等比中项的理解:

如果a,G,b三个数成等比数列,则有G2=ab.反之不一定成立.由等比中项定义可知:
这表明,只有同号的两项才有等比中项,并且这两项有2个互为相反数的等比中项,当a>0,b>0时,G又叫做a,b的几何平均数。


两个向量的数量积的坐标运算:

非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。


向量的数量积的推广1:

a=(x,y),则|a|=x2+y2 ,或|a|=

向量的数量积的推广2:

,则
 
向量的数量积的坐标表示的证明:
 
已知 ,则
 

圆的定义:

平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。

圆的标准方程:

圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为

圆的一般方程:

圆的一般方程
>0时,表示圆心在,半径为的圆;
=0时,表示点
<0时,不表示任何图形。


圆的定义的理解:

(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.

圆的方程的理解:

(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.


几种特殊位置的圆的方程:

条件 标准方程 一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点