本试题 “如图,在平面直角坐标系中.锐角α,β的终边分别与单位圆交于A,B两点.(1)如果tan α=34,B点的横坐标为513求cos(α+β)的值;(2)若角α+β的终边与单位圆交...” 主要考查您对同角三角函数的基本关系式
任意角的三角函数
两角和与差的三角函数及三角恒等变换
圆的标准方程与一般方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
同角三角函数的关系式:
(1);
(2)商数关系:;
(3)平方关系:。
同角三角函数的基本关系的应用:
已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.
同角三角函数的基本关系的理解:
(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式:
(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。
任意角的三角函数的定义:
设α是任意一个角,α的终边上任意一点P的坐标是(x,y),它与原点的距离是,那么,,
以上以角为自变量,比值为函数的六个函数统称为三角函数。三角函数值只与角的大小有关,而与终边上点P的位置无关。
象限角的三角函数符号:
一全正,二正弦,三两切,四余弦。
特殊角的三角函数值:(见下表)
两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
方法提炼:
(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。
圆的一般方程:
圆的一般方程
当>0时,表示圆心在,半径为的圆;
当=0时,表示点;
当<0时,不表示任何图形。
圆的定义的理解:
(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件 | 标准方程 | 一般方程 |
圆心在原点 |
|
|
过原点 |
|
|
圆心在x轴上 |
|
|
圆心在y轴上 |
|
|
与x轴相切 |
|
|
与y轴相切 |
|
|
与x,y轴都相切 |
|
|
圆心在x轴上且过原点 |
|
|
圆心在y轴上且过原点 |
|
|
与“如图,在平面直角坐标系中.锐角α,β的终边分别与单位圆交于A...”考查相似的试题有: