返回

高中三年级数学

首页
  • 单选题
    下列有关命题的说法正确的是

    [     ]


    A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
    B.命题“若x=y,则sinx=siny”的逆否命题为真命题
    C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0 ”
    D.“x=-1”是“x2-5x-6=0”的必要不充分条件
    本题信息:2012年江西省月考题数学单选题难度一般 来源:叶新丽
  • 本题答案
    查看答案
本试题 “下列有关命题的说法正确的是[ ]A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.命题“若x=y,则sinx=siny”的逆否命题为真命题C.命题“存在x∈R,使得x2+x+1” 主要考查您对

真命题、假命题

四种命题及其相互关系

充分条件与必要条件

全称量词与存在性量词

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 四种命题及其相互关系
  • 充分条件与必要条件
  • 全称量词与存在性量词

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


1、四种命题:

一般地,用p和q分别表示原命题的条件和结论,用分别表示p和q的否定,
四种命题的形式是:
(1)原命题:若p则q;
(2)逆命题:若q则p;
(3)否命题:若
(4)逆否命题:若

2、四种命题的真假关系:

一个命题与它的逆否命题是等价的,其逆命题与它的否命题也是等价的;

3、四种命题的相互关系:



注意:

1、区别“否命题”与“命题的否定”,若原命题是“若p则q”,则这个命题的否定是“若p则非q”,而它的否命题是“若非p则非q”。

2、互为逆否命题同真假,即“等价”


1、充分条件与必要条件:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可推出q,记作,并且说p是q的充分条件,q是p的必要条件;
2、充要条件:一般地,如果既有,又有,就记作,此时,我们说,p是q的充分必要条件,简称充要条件。
概括的说,如果,那么p与q互为充要条件。
3、充分不必要条件、必要不充分条件、既不充分也不必要条件:
①充分不必要条件:如果,且pq,则说p是q的充分不必要条件;
②必要不充分条件:如果pq,且,则说p是q的必要不充分条件;
③既不充分也不必要条件:如果pq,且pq,则说p是q的既不充分也不必要条件。

1、全称量词与全称命题:
①全称量词:短语“对所有的”,“对任意的”在陈述中表示整体或全部的含义,逻辑中通常叫做全称量词,并用符号“”表示;
②全称命题:含有全称量词的命题,叫做全称命题
③全称命题的格式:“对M中任意一个x,有p(x)成立”的命题,记为?x∈M,p(x),读作“对任意x属于M,有p(x)成立”。
2、存在量词与特称命题:
①存在量词:短语“存在一个”,“至少有一个”在陈述中表示个别或者一部分的含义,在逻辑中通常叫做存在量词,并用符号“”表示。
②特称命题:含有存在量词的命题,叫做特称命题;
③“存在M中的一个x0,使p(x0)成立”的命题,记为?x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”。
3、全称命题的否定:
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:,它的否命题
4、特称命题的否定:
一般地,对于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:,其否定命题

发现相似题
与“下列有关命题的说法正确的是[ ]A.命题“若x2=1,则x=1”的否命...”考查相似的试题有: