返回

高中三年级数学

首页
  • 解答题
    如图,直线 l1:y=kx+1-k(k≠0,k≠±)与l2相交于点P,直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn}。

    (1)证明,n∈N*;
    (2)求数列{xn}的通项公式;
    (3)比较2|PPn|2与4k2|PP1|2+5的大小。
    本题信息:2004年湖南省高考真题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “如图,直线 l1:y=kx+1-k(k≠0,k≠±)与l2:相交于点P,直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作...” 主要考查您对

一般数列的通项公式

直线的方程

两条直线的交点坐标

两点间的距离

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一般数列的通项公式
  • 直线的方程
  • 两条直线的交点坐标
  • 两点间的距离

一般数列的定义:

如果数列{an}的第n项an与序号n之间的关系可以用一个式子表示成an=f(n),那么这个公式叫做这个数列的通项公式。


通项公式的求法:

(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1 +λ=q(an+λ)进而得到λ。
②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。


直线方程的定义:

以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。

基本的思想和方法:

求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。

直线方程的几种形式:

1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。


几种特殊位置的直线方程:

 
求直线方程的一般方法:
 
(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.
(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.
利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解.

两条直线的交点:

两直线:,当它们相交时,方程组有唯一的解,以这个解为坐标的点就是两直线的交点。
若方程组无解,两直线平行;若方程组有无数个解,则两直线重合。


两条直线的交点特别提醒:

①若方程组无解,则直线平行;反之,亦成立;
②若方程组有无穷多解,则直线重合;反之,也成立;
③当有交点时,方程组的解就是交点坐标;
相交的条件是


两点间的距离公式:

是平面直角坐标系中的两个点,则
特别地,原点O(0,0)与任意一点P(x,y)的距离为


两点间的距离公式的理解:

(1)在公式中,的位置是对称的,没有先后之分,即间的距离也可表示为
(2)