本试题 “已知一列非零向量an,n∈N*,满足:a1=(10,-5),an=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1),(n32 ).,其中k是非零常数.(1)求数列{|an|}是的通项公式;(2...” 主要考查您对等比数列的通项公式
数列的极限
用数量积表示两个向量的夹角
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
等比数列的通项公式:
an=a1qn-1,q≠0,n∈N*。
等比数列的通项公式的理解:
①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:
将以上(n一1)个等式相乘,便可得到
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。
数列的极限定义(描述性的):
如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。
数列的极限严格定义:
即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。
数列极限的四则运算法则:
若,则
(1),;
(2),;
(3)。
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。
an无限接近于a的方式有三种:
第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,;
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是;
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,。
一些常用数列的极限:
(1)常数列A,A,A,…的极限是A;
(2)当时,;
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,。
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。
用数量积表示两个向量的夹角:
设都是非零向量,,θ是与的夹角,根据向量数量积的定义及坐标表示可得
。
向量数量积问题中方法提炼:
(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。
与“已知一列非零向量an,n∈N*,满足:a1=(10,-5),an=(xn,yn...”考查相似的试题有: