返回

高中数学

首页
  • 解答题
    已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.
    (1)求函数F(x)=f(x)f′(x)+[f(x)]2的最大值和最小正周期;
    (2)若f(x)=2f'(x),求
    1+sin2x
    cos2x-sinxcosx
    的值.
    本题信息:2010年台州模拟数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.(1)求函数F(x)=f(x)f′(x)+[f(x)]2的最大值和最小正周期;(2)若f(x)=2f'(x),求1+sin2x...” 主要考查您对

导数的运算

同角三角函数的基本关系式

任意角的三角函数

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 导数的运算
  • 同角三角函数的基本关系式
  • 任意角的三角函数
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

常见函数的导数:

(1)C′=0 ;(2);(3);(4);(5);(6);(7);(8)

导数的四则运算: 

(1)和差:
(2)积:
(3)商:

复合函数的导数:

运算法则复合函数导数的运算法则为:


复合函数的求导的方法和步骤

(1)分清复合函数的复合关系,选好中间变量;
(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数;
(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。
求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。 


同角三角函数的关系式:

(1)
(2)商数关系:
(3)平方关系:


同角三角函数的基本关系的应用: 

已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.

同角三角函数的基本关系的理解

(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式: 

(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。


任意角的三角函数的定义:

设α是任意一个角,α的终边上任意一点P的坐标是(x,y),它与原点的距离是,那么
以上以角为自变量,比值为函数的六个函数统称为三角函数。三角函数值只与角的大小有关,而与终边上点P的位置无关。

象限角的三角函数符号:

一全正,二正弦,三两切,四余弦。


特殊角的三角函数值:(见下表)



正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。