返回

高中三年级数学

首页
  • 解答题
    抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x﹣n)g(x)在x=a和x=b处取到极值.
    (1)用m,x表示f(x)=0.
    (2)比较a,b,m,n的大小(要求按从小到大排列).
    (3)若,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)
    本题信息:2012年月考题数学解答题难度极难 来源:朱潇(高中数学)
  • 本题答案
    查看答案
本试题 “抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x﹣n)g(x)在x=a和x=b处取到极值.(1)用m,x表示f(x...” 主要考查您对

导数的概念及其几何意义

函数的极值与导数的关系

两直线平行、垂直的判定与性质

抛物线的标准方程及图象

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 导数的概念及其几何意义
  • 函数的极值与导数的关系
  • 两直线平行、垂直的判定与性质
  • 抛物线的标准方程及图象

平均变化率:

一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率
  
上式中的值可正可负,但不为0.f(x)为常数函数时, 

瞬时速度:
如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即
若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.

函数y=f(x)在x=x0处的导数的定义

一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作,即

导函数:

如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=

切线及导数的几何意义:

(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=


瞬时速度特别提醒:

①瞬时速度实质是平均速度当时的极限值.
②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,

 函数y=f(x)在x=x0处的导数特别提醒:

①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.
②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.
③在点x=x0处的导数的定义可变形为:
    

导函数的特点:

①导数的定义可变形为:
②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,
③可导的周期函数其导函数仍为周期函数,
④并不是所有函数都有导函数.
⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.
⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).

导数的几何意义(即切线的斜率与方程)特别提醒

①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).
②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.
③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,
④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.


极值的定义:

(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;
(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

极值的性质:

(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;
(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。


判别f(x0)是极大、极小值的方法:

若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。

求函数f(x)的极值的步骤:

(1)确定函数的定义区间,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

对函数极值概念的理解:

极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:
①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图

②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.
  
③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.
④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有
限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,
⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,
   


两直线平行、垂直的判定的文字表述:

平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直

两直线平行、垂直的判定的符号表示:

1、若
(1)
(2)
2、若,且A1、A2、B1、B2都不为零,
(1)
(2)


两直线平行的判断的理解:

成立的前提条件是两条直线的斜率存在,分别为 
当两条直线不重合且斜率均不存在时,

两直线垂直的判断的理解:

 成立的前提条件是斜率都存在且不等于零.
 ②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。

求与已知直线垂直的直线方程的方法:

(1)垂直的直线方程可设为垂直的直线方程可设为
 
 (2)利用互相垂直的直线之间的关系求出斜率,再用点斜式写出直线方程。
 
求与已知直线平行的直线方程的方法:
 
(1)一般地,直线决定直线的斜率,因此,与直线
平行的直线方程可设为,这是常常采用的解题技巧。
重合。
(2)一般地,经过点
(3)利用平行直线斜率相等,求出斜率,再用点斜式求出直线方程.
 

抛物线的标准方程及图像(见下表):


抛物线的标准方程的理解:

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

求抛物线的标准方程的常用方法:

(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。


发现相似题
与“抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1)...”考查相似的试题有: