本试题 “已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+bn=1,(1)求数列{an}的通项公式;(2)求证数列{bn}是等比数列;(3)记cn=an·bn,求...” 主要考查您对等差数列的通项公式
等比数列的定义及性质
一般数列的通项公式
比较法
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
等差数列的通项公式:
an=a1+(n-1)d,n∈N*。
an=dn+a1-d,d≠0时,是关于n的一次函数,斜率为公差d;
an=kn+b(k≠){an}为等差数列,反之不能。
对等差数列的通项公式的理解:
①从方程的观点来看,等差数列的通项公式中含有四个量,只要已知其中三个,即可求出另外一个.其中a1和d是基本量,只要知道a1和d即可求出等差数列的任一项;
②从函数的观点来看,在等差数列的通项公式中,。。是n的一次函数,其图象是直线y=dx+(a1-d)上均匀排开的一列孤立点,我们知道两点确定一条直线,因此,给出一个等差数列的任意两项,等差数列就被唯一确定了,
等差数列公式的推导:
等差数列的通项公式可由归纳得出,当然,等差数列的通项公式也可用累加法得到:
等比数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。
等比数列的性质:
在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2;
(2)若m,n∈N*,则am=anqm-n;
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。
如何证明一个数列是等比数列:
证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。
一般数列的定义:
如果数列{an}的第n项an与序号n之间的关系可以用一个式子表示成an=f(n),那么这个公式叫做这个数列的通项公式。
通项公式的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1 +λ=q(an+λ)进而得到λ。
②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。
比较法分类:
(1)求差比较法:要证a>b,只要证a-b>0;
(2)求商比较法:要证a>b,且b>0,只要证>1;
比较法的步骤是:
作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
实数比较大小的依据:
在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a、b之间具有以下性质:如图,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b,反之也成立,从而a-b>0等价于a>b;a-b=0等价于a=b;a-b<0等价于a<b.
比较数(式)的大小常用的方法:
(1)一是利用作差法来判断差的符号;二是利用作商法(分母为正时)来判断商与1的大小。这两种方法的关键是变形,常用的变形的技巧有因式分解、通分、配方、有理化等,当两个代数式正负不确定且为多项式形式时常用作差法比较大小.当两个代数式均为正且为幂的乘积式时常用作商法比较大小.
(2)比较大小时应熟记并应用“若a>b且ab>0则”这一结论,不能强化也不能弱化条件,在此时应引起特别重视。
与“已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是T...”考查相似的试题有: