返回

高中二年级数学

首页
  • 解答题
    数列{an}中a1=,前n项和Sn满足Sn+1-Sn=,(n∈N*)。
    (1)求数列{an}的通项公式an以及前n项和Sn
    (2)记(n∈N*)求数列{bn}的前n项和Tn
    (3)试确定Tn(n∈N*)的大小并证明。
    本题信息:2011年0119期末题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “数列{an}中a1=,前n项和Sn满足Sn+1-Sn=,(n∈N*)。(1)求数列{an}的通项公式an以及前n项和Sn;(2)记(n∈N*)求数列{bn}的前n项和Tn;(3)试确定Tn与(n∈...” 主要考查您对

函数的单调性与导数的关系

等比数列的通项公式

等比数列的前n项和

数列求和的其他方法(倒序相加,错位相减,裂项相加等)

比较法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 等比数列的通项公式
  • 等比数列的前n项和
  • 数列求和的其他方法(倒序相加,错位相减,裂项相加等)
  • 比较法

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


等比数列的通项公式:

an=a1qn-1,q≠0,n∈N*


等比数列的通项公式的理解:

①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:

将以上(n一1)个等式相乘,便可得到
 
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。


等比数列的前n项和公式:



等比数列中设元技巧:

已知a1,q,n,an ,Sn中的三个量,求其它两个量,是归结为解方程组问题,知三求二。
注意设元的技巧,如奇数个成等比数列,可设为:…,…(公比为q),但偶数个数成等比数列时,不能设为…,…因公比不一定为一个正数,公比为正时可如此设。

等比数列前n项和公式的变形:
q≠1时,(a≠0,b≠0,a+b=0);

等比数列前n项和常见结论:
一个等比数列有3n项,若前n项之和为S1,中间n项之和为S2,最后n项之和为S3,当q≠-1时,S1,S2,S3为等比数列。


数列求和的常用方法:

1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
 
数列求和的方法多种多样,要视具体情形选用合适方法。


数列求和特别提醒:

(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

 

比较法分类:

(1)求差比较法:要证a>b,只要证a-b>0;
(2)求商比较法:要证a>b,且b>0,只要证>1;


比较法的步骤是:

作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

实数比较大小的依据:

在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a、b之间具有以下性质:如图,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b,反之也成立,从而a-b>0等价于a>b;a-b=0等价于a=b;a-b<0等价于a<b. 

比较数(式)的大小常用的方法:

(1)一是利用作差法来判断差的符号;二是利用作商法(分母为正时)来判断商与1的大小。这两种方法的关键是变形,常用的变形的技巧有因式分解、通分、配方、有理化等,当两个代数式正负不确定且为多项式形式时常用作差法比较大小.当两个代数式均为正且为幂的乘积式时常用作商法比较大小.
(2)比较大小时应熟记并应用“若a>b且ab>0则”这一结论,不能强化也不能弱化条件,在此时应引起特别重视。