返回

高中三年级数学

首页
  • 解答题
    已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2的上、下焦点及左、右顶点均在圆O:x2+y2=1上,
    (Ⅰ)求抛物线C1和椭圆C2的标准方程;
    (Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知,求证:λ12为定值;
    (Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P′、Q′,,若点S满足:,证明:点S在椭圆C2上。
    本题信息:2011年山东省模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2:的上、下焦点及左、右顶点均在圆O:x2+y2=1上,(Ⅰ)求抛物线C1和椭圆C2的标准方程;(Ⅱ)过点F的直线交抛物线C...” 主要考查您对

向量共线的充要条件及坐标表示

平面向量基本定理及坐标表示

用坐标表示向量的数量积

椭圆的标准方程及图象

抛物线的标准方程及图象

直线与抛物线的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量共线的充要条件及坐标表示
  • 平面向量基本定理及坐标表示
  • 用坐标表示向量的数量积
  • 椭圆的标准方程及图象
  • 抛物线的标准方程及图象
  • 直线与抛物线的应用

向量共线的充要条件:

向量共线,当且仅当有唯一一个实数λ,使得

向量共线的几何表示:

,其中,当且仅当时,向量共线。


向量共线(平行)基本定理的理解:

(1)对于向量aa≠0),b,如果有一个实数λ,使得ba,那么由向量数乘的定义知,ab共线.
(2)反过来,已知向量ab共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当ab同方向时,有b=μa;当ab反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.



平面向量的基本定理:

如果是同一平面内的两个不共线的向量,那么对这一平面内的任一向量存在唯一的一对有序实数使成立,不共线向量表示这一平面内所有向量的一组基底。

平面向量的坐标运算:

在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。


基底在向量中的应用:

(l)用基底表示出相关向量来解决向量问题是常用的方法之一.
(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。

用已知向量表示未知向量:

用已知向量表示未知向量,一定要结合图像,可从以下角度如手:
(1)要用基向量意识,把有关向量尽量统一到基向量上来;
(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;
(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。


两个向量的数量积的坐标运算:

非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。


向量的数量积的推广1:

a=(x,y),则|a|=x2+y2 ,或|a|=

向量的数量积的推广2:

,则
 
向量的数量积的坐标表示的证明:
 
已知 ,则
 

椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,


抛物线的标准方程及图像(见下表):


抛物线的标准方程的理解:

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

求抛物线的标准方程的常用方法:

(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。


设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。

直线与抛物线的位置关系:

直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如: