返回

高中数学

首页
  • 单选题
    给出下列命题
    (1)集合{0}不是空集.
    (2)直线a平面α,αβ,则直线aβ;
    (3)二次函数y=1-a(x-1)2有最大值,则 a≤0
    (4)直线l1:2x-y+5=0与直线l1:x+3y-1=0是相交直线
    其中正确的命题个数为(  )
    A.①④B.②③C.①②D.③④

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “给出下列命题(1)集合{0}不是空集.(2)直线a平面∥α,α∥β,则直线a∥β;(3)二次函数y=1-a(x-1)2有最大值,则 a≤0(4)直线l1:2x-y+5=0与直线l1:x+3y-1...” 主要考查您对

集合的含义及表示

二次函数的性质及应用

直线与平面平行的判定与性质

直线的方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合的含义及表示
  • 二次函数的性质及应用
  • 直线与平面平行的判定与性质
  • 直线的方程

集合的概念:

1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集); 集合通常用大写的拉丁字母表示,如A、B、C、……。
      元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系: 
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A 
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集

常用数集及其表示方法: 

(1)非负整数集(自然数集):全体非负整数的集合.记作N 
(2)正整数集:非负整数集内排除0的集.记作N*或N+ 
(3)整数集:全体整数的集合.记作Z 
(4)有理数集:全体有理数的集合.记作Q 
(5)实数集:全体实数的集合.记作R 


集合中元素的特性:

(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。
(2)互异性:集合中的元素一定是不同的. 
(3)无序性:集合中的元素没有固定的顺序.


易错点:
(1)自然数集包括数0.         
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z


二次函数的定义:

一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。

二次函数的图像

是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴
③有顶点
④c表示抛物线与y轴的交点坐标:(0,c)。

性质:二次函数y=ax2+bx+c,

①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。


二次函数(a,b,c是常数,a≠0)的图像:

图像 函数的性质
a>0 定义域 x∈R(个别题目有限制的,由解析式确定)
 
值域 a>0 a<0
 
奇偶性 b=0时为偶函数,b≠0时为非奇非偶函数
a<0 单调性 a>0 a<0
图像特点

二次函数的解析式:

(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为


二次函数在闭区间上的最值的求法:

(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
 



特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.

(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
 
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。

二次函数的应用

(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。


线面平行的定义:

若直线和平面无公共点,则称直线和平面平行。

图形表示如下:

线面平行的判定定理:

平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行

符号语言:

 线面平行的性质定理:

如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行

 符号语言:


 


证明直线与平面平行的常用方法:

(l)反证法,即 
(2)判定定理法,即 
(3)面面平行的性质定理,即 
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即


直线方程的定义:

以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。

基本的思想和方法:

求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。

直线方程的几种形式:

1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。


几种特殊位置的直线方程:

 
求直线方程的一般方法:
 
(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.
(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.
利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解.

发现相似题
与“给出下列命题(1)集合{0}不是空集.(2)直线a平面∥α,α∥β,...”考查相似的试题有: